Патогенетические механизмы взаимодействия лазерного излучения с биологическими тканями
Монохроматичность, строгая направленность, когерентность и свойство концентрировать большое количество энергии на малых площадях дают возможность избирательно коагулировать, испарять и резать биологические ткани бесконтактно, с хорошим гемостазом, стерильностью и абластичностью.
При взаимодействии лазерного излучения с биологическими тканями наблюдается целый ряд эффектов: термический, обусловленный селективным поглощением квантов света, возникновение волн сдавления и упругого удара в среде, действие мощных электромагнитных полей, сопровождающих в ряде случаев лазерное излучение, а также ряд других эффектов, обусловленных оптическими свойствами самой среды.
Высокое содержание воды в большинстве биологических тканей в значительной степени объясняет тот факт, что именно термический эффект имеет существенное значение в характеристике их повреждения, особенно при действии излучения в красной и инфракрасной областях спектра, так как поглощение в этой части спектра обусловлено практически полностью водой.
При воздействии лазерного излучения на ткани важное значение имеет степень его фокусировки . Во время прохождения сфокусированного луча лазера через живые ткани интенсивность излучения быстро падает и для мышечной ткани на глубине 4 см составляет лишь 1—2% начальной энергии. Степень и результат биологического действия лазерного излучения на разные клетки, ткани и органы зависят не только от особенностей излучения (тип лазера, длительность и плотность мощности излучения, частота импульсов и др.), но и от физико-химических и биологических особенностей облучаемых тканей или органов/(интенсивность кровотока, гетерогенность, теплопроводность, коэффициент поглощения и отражения различных промежуточных поверхностей внутри среды и др.). Наиболее чувствительными и легко разрушающимися под воздействием лазерного излучения структурами оказались внутриклеточные компоненты клетки .
Возможность концентрации лазерного излучения в узкий пучок привела к созданию лазерного скальпеля, позволяющего производить практически бескровные разрезы различных тканей. В настоящее время уже накоплен большой опыт использования лазерного излучения в экспериментальной и клинической медицине.
Гемостатические свойства лазерного излучения можно повысить, применяя специальные компрессионные зажимы и лазерные хирургические инструменты, обеспечивающие кратковременное сдавливание и обескровливание тканей по линии предполагаемого разреза. Принцип дозированной компрессии позволяет также значительно уменьшить объем термического некроза тканей, так как в условиях компрессии значительно повышается теплопроводность тканей. В связи с этим одна и та же плотность энергии сфокусированного луча лазера дает возможность более быстро осуществить рассечение тканей при компрессии, обеспечивающей локальную ишемию тканей.
Использование лазера в комплексе со специальными инструментами обеспечивает не только рассечение тканей, но и так называемую биологическую сварку их. Эффект сварки клеточных и тканевых структур отмечен исследователями, применявшими лазерный луч для рассечения различных органов. Однако только с созданием специальной лазерной хирургической аппаратуры удалось наиболее полно реализовать эффект биологической сварки тканей полых органов во время их рассечения. В облучаемой зоне наблюдается повышенная светоабсорбция за счет большей оптической плотности сжатых тканей и многократного отражения света от внутренних частей аппарата, образующих замкнутое пространство. «Сварка» тканей полых органов происходит послойно вдоль линии разреза в зоне локального сжатия тканей, производимого этими аппаратами.
Морфологическим проявлением изменений, лежащих в основе этого феномена, является коагуляционный термический некроз подвергнутых компрессии тканей с образованием по краю разреза пленки из коагулированных тканевых и клеточных элементов, соединяющей на одном уровне все анатомические слои органа
Следствием трансформации световой энергии излучения в термическую в слизистой оболочке является деформация и укорочение желез, сморщивание эпителиальных клеток с компактным расположением их ядер. Образовавшиеся структуры напоминают «частокол». В мышечной оболочке морфологические изменения менее выражены. Подслизистая основа в зоне «сварки»