Биофизические и медико–биологические основы термодиагностики
В клинической практике 65-80% первичных диагнозов ставится с помощью методов лучевой диагностики. Общепринято мнение, что компетентное распознавание весьма широкого круга заболевании, особенно в их ранних и доклинических стадиях, без лучевой диагностики нельзя считать достоверным.
Сложность многих методик диагностической радиологии, значительная нагрузка на организм обследуемого человека противоречит доминирующей тенденции современной медицины к уменьшению инвазивности и лучевых нагрузок при обследовании больных.
По сообщению журнала "Вестник рентгенологии и радиологии" /1988/ число смертных случаев от последствий диагностического облучения во время рентгеновской и гамма-диагностики составляло для СССР более 4000 в год и имело тенденцию к увеличению.
Классический пример - "торотрастный рак" почки. У больных, которым в 1931-1941 гг. вводили рентгеноконтрастный препарат торотраст для диагностических исследований мочи, в 1961-1977 годах был обнаружен рак почки.
Совершенствование рутинных способов лучевой диагностики не приводит к существенному снижению степени облучения обследуемого населения во время медицинских осмотров, диспансеризации.
В эвристике существует представление об идеальном объекте техники. Это своего рода маяк, позволяющий ориентироваться в самых сложных обстоятельствах и проблемах. С этих позиции идеальный способ диагностики должен удовлетворять следующим требованиям:
1. Самостоятельное применение: способ должен обеспечить получение достаточной и необходимой, однозначно интерпретируемой информации, семантика которой способствовала бы установлению достоверного диагноза на фоне полного отсутствия какой-либо другой значимой информации;
2. абсолютное отсутствие при самостоятельном применении немедленных или отсроченных на 70-80 лет побочных реакций и осложнений, а также канцерогенного и тератогенного действия; неинвазивность и безболезненность диагностических процедур: комфортность обследования;
3. Отсутствие героакселерации в результате самостоятельного применения способа;
4. Высокая специфичность и высокая чувствительность исследования;
5. Минимальное время обследования;
6. Абсолютная экологическая чистота;
7. Совместимость с другими способами диагностики.
Метод диагностической радиологии, который в значительной мере удовлетворяет этим условиям - дистанционная инфракрасная термография.
Инфракрасная термография основана на бесконтактной дистанционной регистрации термотопографии кожных покровов организма человека по его собственному излучению, обусловленному различными физиологическими и биохимическими процессами в тканях организма, в диапазоне длин волн от 0.76 мкм до 1 мм.
Основные преимущества дистанционной инфракрасной термографии заключаются следующем:
1. абсолютная безвредность; организм человека не подвергается ни облучению, ни повреждению; возможно многократное исследование одного и того же пациента в течение дня, недели, месяца;
2. абсолютное отсутствие противопоказаний к обследованию;
3. абсолютная чистота в процессе работы /или хранения/ термографической аппаратуры; используемый для охлаждения приемника инфракрасного излучения жидкий азот либо охлажденный воздух при высоком давлении (по принципу Джоуля-Томпсона), либо в системе охлаждения, работающей по принципу Вирлинга испаряется и возвращается в атмосферу;
4. довольно точная топическая диагностика очагов воспаления, новообразований, некрозов и других локальных проявлении различных заболеваний; минимальный регистрируемый градиент температуры между двумя точками па расстоянии 1 мм составляет 0.1С;
5. возможность одновременного последовательного обследования практически всех органов и систем организма человека.
Определение различия температуры поверхности тела при термографии, в основном, осуществляется двумя методами. В одном случае используются жидкокристаллические индикаторы, оптические свойства которых очень чувствительны к небольшим изменениям температуры. Помещая эти индикаторы на тело больного, можно визуально, по изменению их цвета, определить местное различие температуры. Другой метод — технический, он основан на использовании тепловизоров.
Так как все тела, температура которых выше абсолютного нуля, испускают радиоволны сплошного спектра частот (тепловое радиоизлучение) и интенсивность теплового излучения пропорциональна температуре тела, то это свойство, как было показано ранее, нашло широкое применение в медицинской диагностике.