Внешние факторы

Парциальное давление CO2 и O2 в крови

Парциальное давление CO2 в артериальной крови (PaCO2) — наиболее важный внешний фактор, влияющий на MK. MK прямо пропорционален PaCO2 в пределах от 20 до ЗОммрт. ст. (рис. 25-2). Увеличение PaCO2 на 1 мм рт. ст. влечет за собой мгновен ное повышение MK на 1-2 мл/100 г/мин, уменьшение PaCO2 приводит к эквивалентному снижению MK. Этот эффект опосредуется через рН цереброспинальной жидкости и вещества мозга. Поскольку CO2, в отличие от ионов, легко проникает, через гематоэнцефалический барьер, то на MK влияет именно острое изменение PaCO2, а не концентрации HCO3'. Через 24-48 ч после начала гипо- или гиперкапнии развивается компенсаторное изменение концентрации HCO3" в спинномозговой жидкости. При выраженной гипервентиляции (PaCO2 < 20 мм рт. ст.) даже у здоровых людей на ЭЭГ появляется картина, аналогичная таковой при повреждении головного мозга. Острый метаболический ацидоз не оказывает значительного влияния на MK, потому что ион водорода (H+) плохо проникает через гематоэнцефалический барьер. Что касается PaO2, то на MK оказывают воздействие только его значительные изменения. В то время как гипероксия снижает MK не более чем на 10 %, при тяжелой гипоксии (PaO2 < 50 мм рт. ст.) MK увеличивается в гораздо большей степени (рис. 25-2).

Температура тела

Изменение MK составляет 5-7 % на 1 0C. Гипотермия снижает CMRO2 и MK, в то время как гипер-термия оказывает обратный эффект. Уже при 20 0C на ЭЭГ регистрируют изолинию, но дальнейшее уменьшение температуры позволяет еще сильнее снизить потребление кислорода мозгом. При температуре выше 42 0C потребление кислорода мозгом также снижается, что, по-видимому, обусловлено повреждением нейронов.

Вязкость крови

У здоровых людей вязкость крови не оказываетзначительного влияния на MK.

Рис. 25-2.

Влияние PaO2 и PaCO2Ha мозговой кровоток

Вязкость кровив наибольшей степени зависит от гематокрита, поэтому снижение гематокрита уменьшает вязкость и увеличивает MK. К сожалению, помимо этого благоприятного эффекта, снижение гематокрита имеет и отрицательную сторону: оно уменьшает кислородную емкость крови и, соответственно, доставку кислорода. Высокий гематокрит, например при тяжелой полицитемии, увеличивает вязкость крови и снижает MK. Исследования показали, что для лучшей доставки кислорода к мозгу гематокрит должен составлять 30-34 %.

Вегетативная нервная система

Внутричерепные сосуды иннервируются симпатическими (вазоконстрикторными), парасимпатическими (вазодилатирующими) и нехолинергическими неадренергическими волокнами; нейротрансмитте-ры в последней группе волокон — серотонин и вазо-активный интестинальный пептид. Функция вегетативных волокон сосудов мозга в физиологических условиях неизвестна, но продемонстрировано их участие при некоторых патологических состояниях. Так, импульсация по симпатическим волокнам pis верхних симпатических ганглиев может значительно сузить крупные мозговые сосуды и уменьшить MK. Вегетативная иннервация мозговых сосудов играет важную роль в возникновении церебрального вазоспазма после Ч MT и инсульта.

Гематоэнцефалический барьер

Между эндотелиальными клетками мозговых сосудов практически отсутствуют поры. Малочисленность пор — основная морфологическая особенность гематоэнцефалического барьера.

Липидный барьер проницаем для жирорастворимых веществ, но значительно ограничивает проникновение ионизированных частиц и крупных молекул. Таким образом, проницаемость гематоэнцефалического барьера для молекулы какого-либо вещества зависит от ее размера, заряда, липо-фильности и степени связывания с белками крови. Углекислый газ, кислород и липофильные вещества (к которым относят большинство анестетиков) легко проходят через гематоэнцефалический барьер, в то время как для большинства ионов, белков и крупных молекул (например, маннитола) он практически непроницаем.

Вода свободно проникает через гематоэнцефалический барьер по механизму объемного тока, а перемещение даже небольших ионов затруднено (время полу выравнивания для натрия составляет 2-4 ч). В результате быстрые изменения концентрации электролитов плазмы (а значит, и осмолярности) вызывают преходящий осмотический градиент между плазмой и мозгом. Остро возникшая гипер-тоничность плазмы приводит к перемещению воды из вещества мозга в кровь. При острой гипотонич-ности плазмы, наоборот, происходит перемещение воды из крови в вещество мозга. Чаще всего равновесие восстанавливается без особых последствий, но в ряде случаев существует опасность быстро развивающихся массивных перемещений жидкости, чреватых повреждением мозга. Следовательно, значительные нарушения концентрации натрия или глюкозы в плазме нужно устранять медленно (см. гл. 28). Маннитол, осмотически активное вещество, которое в физиологических условиях не пересекает гематоэнцефалический барьер, вызывает устойчивое уменьшение содержания воды в мозге и часто используется для уменьшения объема мозга.

Перейти на страницу: 1 2 3

 
 
 
 

С чего начать путь к здоровым глазам и как достичь результатов? Главное - измените отношение к своим глазам, к себе, а потом и к самой проблеме плохого зрения.

Борьба с гипертонией является сложным и многогранным процессом, основными этапами которого являются первичная профилактика, раннее выявление и адекватное лечение.